
Physics 200-04
Matrices

Matrices will be used time and time again during the course of this course.
Both special relativity and quantum mechanics need them, and a number of
ideas are far more easily expressed in terms of them. It is ironic that matrices
were not taught in school, either high school or university, to physicists in the
first quarter of the 20th century. They were considered a highly esoteric math-
ematical subject of little relevance to physics. Heisenberg, the first developer
of quantum mechanics knew nothing about them, and had to be told by Max
Born that what he had invented was a form of matrix mechanics. The concept
is actually very simple, and we will spend half a lecture on them. They are also
very powerful, and thinking about matrices algebraically allows one to prove
powerful theorems simply.

However their algebra (manipulation) is also counter-intuitive, and they take
some getting used to, so do not be discouraged if at first they seem strange.

Matrices

A matrix is a large n by m array of numbers, variables, symbols, whatever.
If A is a matrix, we designate the element in the ith row and jth column by
Aij .

If two matrices, A and B have the same number of rows and columns, then
the matrix C = A + B is defined by having C have the same number of rows
and columns as both A and B have, and any element of C is just the sum of
the elements with the same row and column number in A and B. Ie, for any
row number i and column number j, the sum is defined by

Cij = Aij + Bij (1)

We can also multiply any matrix by a constant. If α is some constant, then
the matrix αC (ie α times C) is just the matrix obtained by multiplying each
element of C by α.

(αC)ij = αCij (2)

Finally we can multiply a matrix by another matrix, but only if the second
has the same number of columns as the first has rows.

Thus the matrix AB, the product of the matrices A and B is defined only if
A has the same number of columns as B has rows. This product is defined by

(AB)ij =
∑

k

AikBkj (3)

The sum is over all of the columns of A and thus rows of B. Note that each
element in the product is a sum over the products of the elements with the same
row number in A with the elements with the same column number in B.
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It is extremely important to remember that in general the Product AB of
two matrices is not the same as the product BA. You have spent about 12 years
of your life learning and using the fact that in the multiplication of numbers or
of variables, the order in which you multiply them does not matter. You now
have to unlearn this. The order is crucial with matrices. If the matrices are not
square ( have different number of rows and columns) the product in one order
may not even be defined. But even for square matrices, the order in general
matters. Thus for example, if A and B are matrices, ABA is not the same as
A2B, where A2 is of course AA.

Thus as an example,

(

1 2
3 4

)(

−1 1 3
0 1 2

)

(4)

=

(

1(−1) + 2 · 0 1 · 1 + 2 · 1 1 · 3 + 2 · 2
3 · (−1) + 4 · 0 3 · 1 + 4 · 1 3 · 3 + 4 · 2

)

(5)

=

(

−1 3 7
−3 7 17

)

(6)

while
(

−1 1 3
0 1 2

)(

1 2
3 4

)

(7)

is not defined because the first matrix has three columns while the second only
has two rows.

As another example

(

1 2
3 4

) (

1 0
04

)

=

(

1 · 1 + 2 · 0 1 · 0 + 2 · 4
3 · 1 + 4 · 0 3 · 0 + 4 · 4

)

=

(

1 8
3 16

)

while
(

1 0
04

)(

1 2
3 4

)

=

(

1 · 1 + 0 · 3 1 · 2 + 0 · 4
0 · 1 + 4 · 3 0 · 2 + 4 · 4

)

=

(

1 2
12 16

)

Which is not the same as the first product.
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While matrix multiplication is not commutative (ie, the order of multipli-
cation matters), it is transitive. Thus it is easily shown that if you have three
matrices with the appropriate dimensions, that

A(BC) = (AB)C (8)

Ie, it does not matter if you multiply B and C first and then multiply by A or
multiply A and B first and then by C. However the order (ie C on the left and
A on the right) must be preserved.

From a matrix A one can always make a new matrix, called the transpose,
AT . This is defined by defining AT elements as the ones in A with rows and
columns interchanged. Thus

(AT )ij = Aji (9)

Note that

(AB)T = BT AT (10)

(Proof:

(AB)ij =
∑

k

AikBkj (11)

so

((AB)T )ij = (AB)ji =
∑

k

AjkBki (12)

And

(BT AT )ij =
∑

k

BT
ikAT

kj =
∑

k

BkiAjk =
∑

k

AjkBki (13)

(Note that last step in interchanging the BkiAjk term is legal since those are
just ordinary numbers for which the order of multiplication does not matter)
Note that for any matrix, one can always multiply A by its transpose, since AT

has the same number of columns as A has rows and the same number of rows
as A has columns.

One very useful matrix is the identity matrix. This is always a square matrix
(ie has the same number of rows and columns.) All of its elements are zero except
the diagonal ones, which are 1. If I is the identity matrix, then

Iij = 0 if i 6= j

Iij = 1 if i = j (14)

Its primary feature is that the product of the identity matrix (with the appro-
priate dimensions) with any other matrix gives that other matrix back. Eg, if
A is an nxm matrix, and I is an nxn matrix, then

IA = A (15)
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Ie, it acts as far as multiplication of matrices is concerned, as the identity
element (as the number 1 acts as far as ordinary multiplication). Note that if A
is not a square matrix, then the identity multiplying from the left is a different
matrix from the identity multiplying from the right.

Finally for square matrices, (eg, A an nxn matrix) there is the concept of
an inverse. The matrix A−1, the multiplicative inverse of A (note that this is
never (well hardly ever) written as 1

A
) is the matrix which when multiplied by

A gives the identity matrix.

A−1A = I (16)

where I has the same dimensions as does A.
It is easy to show that the left and right inverses must be the same. Let us

say that the matrix B obeys

AB = I (17)

Multiply both sides from the left by A−1. We get

A−1AB = IB = B (18)

on the left hand side and

A−1I = A−1 (19)

on the right hand side which give us B = A−1.

Rotations

Define the ”vector” ( an 3x1 matrix) X by

X =





x

y

z



 (20)

We can define the length of the vector X by

length2(X) = |X| = XT X = x2 + y2 + z2 (21)

Now, consider the general linear transformation,

X ′ = UX (22)

where U is a 3x3 matrix. This makes the three coordinates x′y′z′ to be general
linear functions of xyz. What properties must U have so that the vector X ′ has
the same length as X for arbitrary X? The answer is easy. The length squared
of X ′ is

length2(X ′) = X ′T X ′ = (UX)T UX = XT UT UX (23)
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If this is always supposed to equal the length of X, then we can do that if

UT U = I (24)

since then

XT UT UX = XT IX = XT X = length2(X) (25)

Ie, this is a necessary and sufficient condition on the matrix U that it preserve
lengths. (the above proof has shown the sufficiency. The necessity is slightly
more involved, and requires one to choose a variety of vectors for X to show
firstly that the diagonal elements of UT U must be unity (choosing only one
element of X to be non-zero) and then, chosing two elements of X to be non-
zero, showing that the off-diagonal elements of UT U must be zero)

Thus any rotation, any transformation of the coordinates of an object, which
preserves the distance of that object, can be represented by such a matrix. These
are called orthogonal or rotation matrices.

Note that these matrices form what is called a group. Namely if U and V

are such matrices, then so is UV , the product, such a matrix.

(UV )T UV = V T UT UV = V T IV = V T V = I (26)

Ie, if U and V obey the orthogonality condition, then so does UV . In terms of
rotations, this means that if you rotate, and then you rotate in some other way,
the end result is the same as if you had just done one rotation (usually different
from the either of the rotations).
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