
Physi
s 200-04Dynami
s Con't.Let is look at an example of both the Heisenberg and S
hr�odinger solutionto a problem, that of the behaviour of an ele
tron spin in a magneti
 �eld.The ele
tron spin is related to the Pauli spin matri
es bySx = �h2~sx � ~�Sy = �h2~sy � ~�Sz = �h2~sz � ~� (1)where the three ve
tors ~sx; ~sy; ~sz are 
hoosen initially so thatSx(0) = �h2�1Sy(0) = �h2�2Sz(0) = �h2�3 (2)Now, we know 
lassi
ally that a spinning 
harge has a magneti
 moment aswell given by �x = g emSx and similarly for the y and z 
omponents of themagneti
 moment. Here e is the 
harge and m is the mass of the parti
le,and g is a fa
tor whi
h measures how the 
harge in the spinning obje
t isdistributed with respe
t to how the mass is distributed. A g greater thanone means 
lassi
ally that the 
harge is distributed further from the spin axisthan is the mass. The g-fa
tor for the ele
tron is very 
lose to 2. There is anintera
tion of any magneti
 moment with a magneti
 �eld that has the form�xBx+�yBy�zBz where B is the external magneti
 �eld. Ie, this intera
tionenergy is trying to align the magneti
 dipole with the �eld.Let us assume that the external �eld is in the z dire
tion, so that onlyBz is non-zero. This expression for the energy of a 
lassi
al spinning systemis then H = g emSz = g e2m�hBz ~Sz � ~� (3)The equations of motion for the three 
omponents of the spin are nowi�hdSxdt = [Sx; H℄ (4)1



and similarly for Sy and Sz. The easiest equation to solve is that for Sz sin
eH is proportional to Sz. Sin
e any matrix always 
ommutes with itself, wehave that dSzdt = 0 (5)and Sz will be equal to �h�3=2 for all time.The equation of motion for Sx and Sy will bei�hdSxdt = ge�hBz2m [Sx; �3℄ (6)and similarly for Sy. Writing these in terms of the 1,2,3 
omponents, we havei�hd~sxdt = ge�hBzm i~sx � ~e3 (7)where ~e3 has only its 3 
omponent equal to 1 and the other two 0. Thus wehave dsx1dt = ge�hBzm sx2dsx2dt = �ge�hBzm sx1dsx3dt = 0 (8)Thus sx3 whi
h starts out as 0 remains zero. The solution for the other two
omponents whi
h obeys the initial 
ondition that sx1(0) = 1 and sx2(0) = 0is sx1 = 
os(!t)sx2 = �sin(!t)sx3 = 0 (9)where ! = �����ge�hBzm ����� (10)Similarly solving the equations for Sy givessy2 = 
os(!t)2



sy1 = sin(!t)sy3 = 0 (11)The Spin 
omponents thus areSx = �h2 � 0 (
os(!t) + i sin(!t))(
os(!t)� i sin(!t)) 0 �Sy = �h2 � 0 (�i 
os(!t) + sin(!t))(i 
os(!t) + sin(!t)) 0 � (12)The expe
tation value { the average value of the measured 
omponentsof the spin 
omponents are given by h jSwj i, where j i is the state.Onehas many options for the state. However, let us say that the state isj i = 15 � 34� (13)(note this is purely an example{ this state has no spe
ial signi�
an
e)Then we haveh jSx(t)j i = �h50 ( 3 4 )� 0 (
os(!t) + i sin(!t))(
os(!t)� i sin(!t)) 0 �� 34�= �h50 �12ei!t + 12ei!t� = 2450 
os(!t) (14)Similarly we �nd that h jSy(t)j i = 2450�h sin(!t) (15)and h jSz(t)j i = 750�h (16)Ie, the average ve
tor moves so that its z 
omponent stays 
onstant, whileits x and y 
omponents rotate about the z axis with frequen
y !.Note that this is exa
tly the same as the motion of a spinning top 
lassi-
ally. Ie, the equations of motion of the expe
tation value of the 
omponentsis the same as 
lassi
al equations of motion.This is a generi
 feature of quantum systems. The expe
tation values tendto obey equations that are very similar to the 
lassi
al equations of motion3



of the system. Note that if we do su

essive measurements on a system wewill not see this kind of motion. Instead we will see random jumping around.However if we make measurements on a huge number of parti
les, all startingin the same initial state and then average over the measured values, we dotend to get something that looks 
lassi
al.Classi
al physi
s seems to be something whi
h is an approximation to thequantum physi
s if we only look at averages.S
hr�odinger.Let us look at the same problem from the S
hr�odinger point of view. Herethe operators 
orresponding to the physi
al attributes (ie the spin 
ompo-nents) do not 
hange in time. Instead it is the state j i whi
h 
hanges intime. In parti
ular we have i�hdj idt = Hj i (17)Just as above H = geBz�h2m �z (18)Thus we have writing j i = � 1 2 � (19)we have  i�hd 1dti�hd 2dt ! = !2 �h�  1� 2 � (20)Thus  1 =  1(0)e�i!t=2 2 =  2(0)ei!t=2 (21)Note that this expression is not terribly transparent. In our example  1(0) =3 and  2(0) = 4We note that in many ways, solving the S
hr�odinger equation is mu
hsimpler than solving the Heisenberg equation. For one thing we do not have4



to solve for our three separate matri
es, just the one 
olumn ve
tor j i. Thisis true in general. The Heisenberg representation is almost never used toa
tually solve problems. The S
hr�odinger representation is almost alwaysused. This does not mean that the Heisenberg is not important{ it is veryimportant theoreti
ally.Just to give a very very very brief taste of the quantum me
hani
s of say asingle parti
le moving in the x dire
tion. The usual attribute is the positionmatrix X, together with the momentum P . As hinted, these two operatorsare related by [X;P ℄ = i�hI (22)We 
an write a general ket ve
tor in terms of the amplitudes in the x basis{ie in terms of the eigenvalues of the X matrix, whi
h we will 
all jxi. Thus,a general state is j i = Z hxjj ijxidx (23)where we have repla
ed the sum over the eigenve
tors by this integral. Yes,I know I said that the eigenve
tors of X do not really exist, but let us ignorethis for now.We will de�ne the  (x) = hxjj i as the amplitudes for the state j i tohave eigenvalue x. The probability to have the value x between x1 and x2 isgiven by R x2x1 j (x)j2dx.Now we have to �gure out what P is. P is supposed to be a matrix su
hthat XP � PX = i�hI. Let me not prove it but just state thatP Z  (x)jxi = Z �i�h� (x)�x jxidx (24)Sin
e P This de�nition of P a
ting on any ve
tor expanded out in terms ofthe X eigenve
tors 
ertainly obeys the required 
ommutation relations.From 
lassi
al physi
s, we know that the energy of the harmoni
 os
illatorfor example is H = 12(P 2m + kX2 (25)5



. We 
an use exa
tly this same expression for the Quantum harmoni
 os
il-lator.Just plugging in for what X abd P are we �ndHj i = Z  � �h22m �2 (x)�x2 + k2x2 (x)! jxidx (26)and the eigenvalue equation for H, namely Hj Ei = Ej Ei be
omesint � �h22m �2 E(x)�x + k2x2 E(x)� E E(x)! jxidx = 0 (27)In order that the left hand side be a zero ket ve
tor, ea
h 
oeÆ
ient ofthe jxi must be zero. Thus one �nally �nds the di�erential equation� �h22m �2 E(x)�x + k2x2 E(x)� E E(x) = 0 (28)If we solve this equation, we �nd that this energy is NOT 
ontinuous. It
omes in dis
rete lumps, as E = (n + 12)�h! (29)where ! = q km the 
lassi
al angular frequen
y of the os
illator. This dis
reteenergy is NOT fed in from the beginning. Instead it is derived from thede�nition of P and X and the energy as de�ned in terms of these quantities.Note that there is no 
lassi
al physi
s here, ex
ept maybe in de�ning theenergy in terms of P and X. There is no imposing some funny quantization
onditions onto the 
lassi
al solutions (R p _qdt = nh). One simply de�nes thedynami
 variables X and P , demands the 
ommunation relation betweenthem, writes down the Hamiltonian and derives the fa
t that the energy
omes in dis
rete lumps.Furthermore, if one looks at the Heisenberg equations of motion, P andX obey exa
tly the same equation in this quantum system as the 
lassi
alequations do. 6


