Physics 200-04
Assignment 5

1)Old Quantum Mechanics: The Bohr Sommerfeld Quantum rules stated
that if the classical orbit was closed (returned on itself) then the quantum
rule was that

/pq'dt =nh (1)

where the configuration variable (eg the positions) is ¢, and p is the momen-
tum. Assuming that the momentum is p = mv = mg,(ie the dot denotes
derivative with respect to time) and we are looking at a harmonic oscillator

mq = —kq (2)

and the energy is

¢ (md” + ke?) 3)

What is the general solution to the equations of motion? Express the energy
and the quantum integral in terms of the parameters of the general solution.
Show that the quantum condition lead to the result

Eharm osc — nhv (4)

where v is the frequency of the oscillator %sqrt%.

(The true quantum answer is E = (n + 3)hv)
The most general solution for the equation of motion of a harmonic os-

cillator is
k , k
q(t) = Acos(y/ —t) + Bsin({]/ —t) (5)
m m

The velocity then is

v(t) = d(il—(tt) = \/% (A%n( %t) + Bcos(\/%t)) (6)




The energy of a Harmonic oscillator is 1 (mv? + kq?). Thus, the energy is

2 2
1 K o [k 1 [k & 1
E = 3™ ( . (Asm( Et) + Beos( Et))) + §k (A(:os( Et) + Bsin( Et)) = ik(A -

The quantum integral is (where T is the period of oscillation)

= /UT l{:(AQsin(\/gt)2 + BQCOS(\/gt)Q + 2AB5in(\/gt)cos(\/gt))dt = /OT kA? (%(1 — cos(2( ;}

since the integral of the cosine funtion and sin function over one whole period
is zero.

But the period of the harmonic oscillator is independent of the energy for
a Harmonic oscillator, and is just given by

T = 27r\/% (12)

Thus we have

The true quantum result is

B =(n+ g)h % (15)
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2a)Consider the earth in circular orbit around the sun. What would the
be the difference in radius for two adjacent energy levels of the earth? (Re-
member that the quantization condition for the earth is that the momentum
of the earth times its velocity integrated over time around one orbit is equal
to an integer times h. In this case this integer is called the principle quan-
tum number. I want the difference in radii corresponding to adjacent integers
where one of the integers corresponds to the current orbit of the earth.) What
is the energy difference between these two orbits as a fraction of the earth’s
orbital energy?

Hint: You need to use the various pieces of information about Newtonian
orbits Kepler’s laws, Newton’s laws for orbits, etc.

b)Bohr Correspondence: Show that the frequency of the emitted photon
or graviton from the earth in circular orbit around the sun from the decay be-
tween two adjacent principle quantum numbers for the earth approximately
equals the orbital frequency of the earth.

le, show from the first part that the energy is proportional to nﬁz where K
is a constant expressed in terms of the masses of the earth and sun, and the
Newtonian Gravitational constant. Then show that the derivative of £ with
respect to n (E, — E, 1 = % ~ ) divided by h is just the orbital
frequency for the current radius of the earth’s orbit.

Bohr’s correspondence principle basically says that at large quantum
numbers the quantum system should behave like a classical system. Since for
a classical system one would expect the frequency of the emitted radiation
to equal the orbital frequency, the quantum frequency of transition between
adjacent levels should approximately be the classical frequency.

[6] [3]on each part. [1] for numerical
This is just the same as the orbit of the electron around the nucleus,
except that the constants change. We have

mv?  GMm
= — 16
I 7 (16)
as the acceleration/force balance equation. We also have the energy equation
1 GM
E = §m7)2 — Tm (17)
Finally we have the quantizaton condition
nh = /pvdt = /vadt = mv’T (18)
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where T" is the period. We also have tha

t =278 Thug

T

(27 R)?
h = / : 19
n | M (19)
and from the acceleration equation
o I
m(27) Tz = GMm (20)
Solving the first for T and substituting into the second, we have
nh ?
(17)°R? | ————= | =GMm 21
m(1m) (m(QWR)2> " 21)
or
h2
R=n?>— 22
" 2n)miGM (22)
or
2,2
. (2m) 77}LL2GMR
. 400(3 x 10%'k¢)?6.6 x 107112 x 10%%g1.4 x 10'2m
- (6.6 x 10-34)2
=1.5x 10" (23)
or
n~3.8x10™ (24)
The difference in radii between n and n — 1 is
h? h? 2R
~Rin—1 ) — 1)?) = 2n — 1) ~ —(25
Hu = Rin e ™~ V) = g @ U A ()
Thus
1.4 x 10'2
Ry — Ry 2 —o 22 231072y, (26)
3.8 x 10™

This is a very very very very small difference.
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b) From part 1, we can also solve for the energy. Following the notes for
the energy of the H atom, we find that

1 5 GMm GMm
E—§mv R Y (27)

using the acceleration balance equation. But from the above we know what
R is, and thus find

(27)2G?* M?m?
E = e (28)
The difference in energy between two levels is
(2m)2G*M?*m? [ 1 1
Bn = EBpr=— h? n?  (n—1)?
_ @m)’GPMPm? (n? — (n—1)?
B h? n?(n —1)?
(27)2G*M?*m? 2
The frequency is
AE  (2m)*G*M*m? 2 _
v=——= e E:3X10 8/sec (30)

or the period is one year as one would expect.
One can show this explicitly, and easily. E goes as - while T goes as n
. . . n

(T* is proportional to R and since R goes as n?, T goes as n?.

Now,

3

nh — / mudt = / 2K Edt (31)
But, by the virial theory for the inverse r power law potential, or from the
acceleration balance equation, the PE = —2KFE so, that KE = —FE. This
total energy is £ = KE + PE = —KFE. This gives the

nh = — / 2Bdt = 2ET (32)



Differentiating both sides by n and recalling the power law behaviour of £
and T" we have
dE dTr 2F 3T —-2F dE

h=-2—T - 2F—=42—T - 2F— = T=—T
dn dn + n n n dn (33)

Thus we have

dE _ h (34)
dn T

But ‘fi—f is approximately F, — E, ;| for large n. Thus we immediately get
that

AE ~ — (35)

The radiation emitted in making a transition from the n'* orbit to the (n —

1)'h orbit has just the frequency of the orbit, as one might expect.
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3. Calculate the following complex operations: i) (3—44)((1—5i) — (2+1))
(3 — 4i)(—1 — 6i) = (—3 — 24 — 18i + 4i) = 27 — 14

L L T

i) (10 — 5i)(2 + 20) /(3 + 4i)

(10— 5)(2+2))(3—4i) 10, .~ 2 o 2 2% 19
(34 40)(3 _ 4i) = %(2—2)(1—%2)(3—42) = 5(34—2)(3—42) = 5(13—92) = g——z
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iii)Find the roots of the following equation, using complex numbers if
necessary

2 +32+5=0 (36)
—3+9-4-1-5 31‘/11'
T = =——x—1
2 27 2
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iv) Expand the expression (x+2i)(z+1+1)/(x+1) into a single expression
a + bt where both a and b are real numbers. Assume z is a real number.




(z+20)(x+1+i)(x—1i) 2>+ 1 +20)2>+ (1 +i)z+ (2+ 2i0)
(x+1i)(x — 1) B x? +1
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(x420) (z4+1+10) [ (x+i) =

4. Multiply the matrices

i)
CREER I Gy "

<1+i 1+z’><1 i)_(li 1+z‘)
1—4 1—1 - 4+1) \1+4+:¢ 33—
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ii) Find the transpose, the Hermetian transpose, and the inverse of the

matrix
1447 1474

<1i 1+z’> (38)

. . T . .
(1—!—2. 1+z.> :<1+Z. 1@) (39)

1—7 141 14+72 1+

T4+i 140\ (1—di 1+
(1—2’ 1+i> _<1—i 1—i) (40)
(41)

The inverse is the matrix which, when multipied by the above matrix
gives teh identity matrix.

(ot G a=6) @

(1+ia+(1+i)c=1 (43)
(1+)b+(1+4)d=0 (44)
(1—ia+(14+i)c=0 (45)
(1—i)b+(1+i)d=1 (46)

~J



?ubtraeting the third from the first, 2ta = 1 ora = 2% = —%i and ¢ = é%{ﬁzg
5.

Subtracting the fourth from the second, b = %z and d = —1

=1
Thus teh inverse is
(0 =201 %)
c d) 2\1 —i
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