Physics 200-05
Assignment 2

1. i) Show that

sinh(6) cosh(8') + cosh(#) sinh(6’) = sinh(f + ') (1)
cosh(6) cosh(8') + sinh(#) sinh(#") = cosh(6 + ') (2)

Note the similarities and differences with the trigonometric formulas you are (I
hope) more familiar with.
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ii) Using the above formula show that two successive Lorentz transformations
both along the x direction are such that if the velocity of transformation from
the first to the second frame is v; and of the second to the third frame is vy
then the velocity from the first to third frame is
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(Use the fact that tanh(@) = %). Ie, while the rapidities ( the "angle” in the
hyperbolic function representation of the Lorentz transformations) of successive
Lorentz transformations add, the velocities do not.




If

v; = tanh(0)
vy = tanh(theta')
vy = tanh(8 + 6')

vf
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To show that the combined transformation is the transformation of th esum

of the angles
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cosh(0)x — sinh(0)t
sh(6)t — sinh(theta)z
cosh(0')% — sinh(8')t
cosh(0)t — sinh(theta)

Substituting the first pair into the second, we get
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(cosh(#) cosh(8') + sinh(#) sinh(6")) =
— (sinh() cosh(8') + cosh(6) sinh(8")) ¢
cosh(0 + 60")x — sinh(0 + 6')t

and similarly for # Ie, combining two Lorentz transformations adds the rapidities.

2.) Show the consistancy of the special relativistic formulas. Consider the
following synchronization of clocks. Alice and her friend Amy get together at
the origin and sychronize their clocks to each other, ensuring that both show
exactly the same time and run at the same rate. Now Amy very slowly ( with
a velocity dv approaching zero) moves away from Alice to a location X along
Alice’s x axis. Show that in Alice’s frame, the time on Amy’s clock at X will
be synchronized with her clock. ( Show that in the limit as dv goes to zero, the
time difference between Amy’s time to get to the location X and Alice’s time



for Amy to get to X are the same.) Now let us look at this process from Bob’s
point of view, who is moving with velocity v with respect to Alice. Show that
Bob will calculate the difference between Amy’s time to get to X and Alice’s
time is —2X .
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Hint, use the expression for the rate of Alice’s and Amy’s clocks according
to Bob (time dilation) and look at the difference to lowest order in dv. Find
the time it takes Amy to get to the point X and express the time difference in

terms of X ] ]
I will assume throughout that ¢ = 1- ie that I have chosen coordinates for

t so that t is measured in meters. To restore all the ¢’s in the below, multiply
att times by ¢, and divide all velocities by c.

In Alice’s frame, Amy is travelling at velocity dv which is assumed to be
very small. According to Alice, Amy’s clock will tick at the slower rate t oy =
V1 — 602t gp5ce- Now, to go a distance X, Amy must travel for a time of % ( for

Alice) which corresponds to a time of —Vlgv‘s”Q for Amy. Expanding out in a series
in Jv we have that the time on Amy’s clock when she gets there is % — %X ov,
while Alice will say she gets there in a time %. Thus the difference between
Amy’s clock and Alice’s clock is —%X dv which goes to zero as dv gets very small.
Te, in the limit of very slow transport, Amy’s time at the location X is the same
as Alice’s time there. Ie, This is a valid way of defining synchronization of clocks
for Alice.

However, for Bob, Alice is moving at velocity v, and Amy will be moving at
velocity v+dv ( assuming Amy moves in the same direction as Alice does with re-
spect to Bob). Thus, Bob will say that Amy’s clock goes at /1 — (v + dv)%tBop
while Alice’s clock goes at /1 — (v)2tBos. Amy travels for a time of £ in Amy’s
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time, and thus in time P e in Bob’s time. Thus after a time of 5- on
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Alice and Amy’s clocks, Bob’s time will be Py for Alice’s location and
will be

X
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for Amy’s clock. But this is just what we would expect since Bob’s synchroniza-
tion is different from Alice’s. Ie, he will say that Amy and Alice’s clocks are not

synchronized by this procedure because of the time dilation of their two clocks.
3. Let us assume that we measure time in units (light meters) such that the

velocity of light is 1. Consider the following pairs of points. Are they timelike,

spacelike or null separated and what is the squared distance between them?
Nt=0;z=1,y=1;2=0andt=1;2=1; y=0; 2=0
it=22z=3;,y=1;2=0andt=3; z=2; y=3; 2=0
ii)t=3;z2=1;,y=1; z2=0;andt=5;z=1;, y=0; 2=0




DAZ? + Ay + 522 — AP =0+ (-1)?+0*—11 =0

These two points are null or light like separated.

ii)Az? + Ay? + 822 — At? =4 >0

Sspacelike separated.

iii) Az2 + Ay? +622 — A2 =-4+1=-3<0

Timelike separated.

In each case, what velocity and in what direction, would be needed to make
the time separated points occur at the same point in space, or the spacelike
separated points occur at the same time?

i)In the first case, it is impossible. These two points are light like separated.

Te, a light ray could travel between the two. Since the velocity of light is ¢ in
all frames, there is no way that these two points could either occur at the same
point in space or at the same time in some frame.

ii) These are spacelike separated. We want a Lorentz transformation which
will transform the At to zero. There are an infinite number of ways of doing
this. For example, if we have a Lorentz boost in the y direction, we have

1
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to make £ equal to zero, we need v = ﬁ—; = 1. In general if we take the velocity

in the 7 direction, we have

6t = (At —vAy) (33)
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As long as v < 1 this would be a valid Lorentz transformation. Thus any
7 which obeys this would be a valid direction in which to take the Lorentz
transformation and make the two events occur at the same time.

iii) These two points are timelike separated. Thus there exists a transfor-
mation so that the two events occur at the same place but different times. But
since they are timelike separated, we could have a particle, travelling at velocity
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travelling from one of those events to another. Thus if we went into the frame
of that particle travelling at that velocity, the two events would occur at the

same place, but different times.
4) i) Two particles are travelling at 4/5 the velocity of light and are 5 cm

apart. How far apart are they in the frame in which they are at rest?




Boy, did T mess up this question. clearly if the two particles are separated
in a direction perpendicular to their motion, they separation is independent of
which frame ( in the direction of their motion) I measure it in. Thus in this
case in the rest frame they are 5 cm apart.

If on the other hand they are separated in the directionof their motion (ie
one is travelling behind the other) then by the length contraction, their length
in their rest frame would be

Sem
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ii) Muons are created in the upper atmosphere of the earth ( say 10km
high). How fast would they have to be travelling so that half of them reached

the surface of the earth? o ] i
uons decay, and have a half life- ie a time over which half of the muon’s

will have decayed. I go to google to find out what that half life is, and come up
with a whole slew of answers. 1.4us, 1.52usec, 2.2usec, 3.7usec.

This is an important lesson about Google. Do not trust the answers you
get from it. Wikipedia gives 2.2usec. for the lifetime. The Particle Physics
Tables, which is the authoritative compilation put out by Lawrence Berkeley
Labs every year give a mean life of 2.19703 £ .00004 usec.

http://pdg.Ibl.gov /2006 /tables/contents tables.html.

But the mean life, or lifetime is NOT the half life. The half life is related to
the mean life by

half life=In(2) mean life.= .693 mean life

The mean life is the time for 1/e of the muons to decay.

So the half life of the muon is 1.52usec.

Now, if the muon is travelling at speed v, the earth time it takes to go
through the atmosphere is 10km/v However for the muon’s the time is only
/1= (%)?10km /v. The muons decay to half their number in 2.2y sec of their
time. Thus

L'= = 25¢m /3 = 8.33cm

1- (%)QIOkm/v = 1.5 10 ®sec (36)
1- (%)2 = 2210202 (37)
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1.1 10717 + 2.210-20 ~ ¢2

Ie, we can write the above as

1— v ~ w =103
c 2
Te, v is within .1% of c.
Note that from the point of view of the muons, it is not that their half life
changes. They see that 10km of atmosphere as contracted by the Lorentz length



contraction. So again they see that half their population has decayed while the

thin slab of the atmosphere races by them at almost the speed of light.
5) Peter Spacerider has heard about Relativity and heard that from the

point of view of a rapidly travelling observer, his own spaceship is really short.
He passes a spaceship identical to his own travelling in the opposite directioni
at almost the velocity of light. Just as the nose of his spaceship is at the tail
of the other spaceship he presses the button in the nose to fire the laser canon
in the tail of his own spaceship at the other spaceship. His collegue Johnny
says ”You are an idiot. It is the other spaceship that is really short since it is
travelling with respect to us. Your shot has missed.” Who is right? Why? What
is wrong with the other’s argument. (Note, you can assume that the distance
between the spaceships passing each other is much less than the length of the
spaceships.)
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Figure 1: For Problem 5. The two views of the spaceships passing each other.
Peter is in the nose of the right spaceship where he presses the button to fire
the laser canon in the tail of his spaceship.

Johnny’s argument is that Peter will miss the other spaceship because his
shot will go in front of the other spaceship. This is always wrong. The key
issue that both have forgotten is that it takes a finite time for the signal to pass
down the ship to the canon. If we assume that the signal travels at the velocity
of light, then Peter’s viewpoint diagram shows that the signal will get to the
canon at about the time that the canon has travelled almost to the tail of the
other ship. Thus the shot will hit very near the tail of the other ship. In the
case of the Johnny’s point of view, since the other spaceship is travelling at only




slightly slower than the signal (from the diagram, the contraction is just under
1/2 so the velocity of the other ship is about 90% of that of light). If the other
ship were travelling at the velocity of light, then the shot would just hit exactly
at the end of the other ship, since the signal and the tail of the spaceship would
keep pace with each other.

This also tells us that if the signal travels slower than the other ship, then
the the shot will miss— behind the other ship. In Peter’s viewpoint, this will be
because the signal is actually being carried along with the spaceship and thus
reaches the back after the back of Peter’s ship with its canon has passed the
back of the other ship.




